Алекс – Юстасу

We use cookies. Read the Privacy and Cookie Policy

Условие

Штирлиц должен передать в Центр набор из четырех секретных натуральных чисел А, В, С, D. Для большей секретности он отправил набор чисел А + В, А + С, А + D, В + С, В + D неизвестно в каком порядке.

Центр, получив от Штирлица числа 13, 15, 16, 20, 22, расшифровал сообщение и нашел требуемый набор из четырех секретных натуральных чисел. Какие числа Штирлиц должен был передать в Центр?

Подсказка: (A + C) + (B + D) = (A + D) + (B + C).

Ответ

Это числа – 6, 7, 9, 13. Поскольку (А + С) + (В + D) = (А + D) + (В + С), а из попарных сумм чисел 13, 15, 16, 20, 22 совпадают только 13 + 22 = 15 + 20 = 35, то А + В = 16, С + D = 19. Поскольку А и В одинаковой четности, то получаем систему двух уравнений с двумя неизвестными:

А + В = 16

|A – B| = 2.

Решая систему, находим два числа 7 и 9 (то есть А = 7, В = 9 или А = 9, В = 7). Далее легко находим два недостающих числа: 6 и 13.

Больше книг — больше знаний!

Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ