Устройство заземления
В современных коттеджах широко используются энергоемкие электрические устройства, которые требуют защитного заземления или зануления. В этом случае необходима прокладка третьего защитного провода, связанного с заземлением. Отключение электроустановок при однофазных замыканиях на землю может осуществляться при помощи защитного отключения, которое выполняется в дополнение к заземлению (занулению). Заземления нулевого провода устраиваются на концах воздушных линий и ответвлений длиной более 200 м, а также вблизи вводов кабельных или воздушных линий в помещения. Внутри помещений нулевой провод, имеющий повторное заземление, присоединяется к заземляющей сети у распределительного щитка.
Как известно, в случае прикосновения к токоведущим частям электрической установки, находящимся под напряжением, или к металлическим частям, которые находятся под напряжением вследствие неисправности изоляции, может произойти поражение человека электрическим током. В результате электрического удара человек может потерять сознание, у него могут появиться судороги, прекратиться дыхание и кровообращение. Электрический удар может привести к смертельному исходу. Смертельные поражения людей электрическим током возможны при напряжениях от 12 В и выше.
Чтобы исключить случайное прикосновение человека к оголенным токоведущим частям, их располагают на высоте или устанавливают ограждения. Для обеспечения безопасности людей, работающих на установках напряжением до 1000 В и выше, сооружают заземляющие или зануляющие устройства и заземляют или зануляют металлические части электрического оборудования и электрических установок. Заземляющие (зануляющие) устройства должны удовлетворять требованиям, обусловленным режимом работы сетей и защиты от перенапряжений.
Защитное действие заземления основано на том, что части электроустановок, прикосновение к которым опасно при нарушении изоляции, соединяют с заземлителями, расположенными в грунте, т. е. создается заземление, которое имеет сопротивление, достаточно малое для того, чтобы падение напряжения на нем (а именно оно воздействует на организм, определяя значение тока) не достигало опасного значения. Поэтому человек, прикоснувшийся к заземленной части, попадает под пониженное напряжение. Чем лучше заземление, т. е. чем меньше его сопротивление, тем меньше появляющееся при нарушении изоляции напряжение на машинах, станках, корпусах электроаппаратов и двигателей, конструкциях зданий, опорах воздушных линий и на поверхности земли. Понятно, что при этом растут затраты труда и материалов, необходимых для монтажа заземляющего устройства. Нормативы устанавливают разумные пределы напряжения прикосновения и в то же время позволяют проектировать заземление без чрезмерных затрат.
В СНиП, ПУЭ, Правилах технической эксплуатации и инструкциях подробно перечисляются элементы электроустановок, которые нужно заземлять, даются указания по расчету заземлителей и напряжений прикосновения для разных условий, перечислены требования к проектированию, монтажу и эксплуатации заземляющих устройств. Характерными и принципиальными чертами нормативов являются:
• отход от нормирования заземляющих устройств по сопротивлению растекания электрического тока и ориентация на нормирование возникающих напряжений;
• использование естественных заземлителей при обеспечении их работоспособности в условиях протекания больших токов замыкания;
• учет коррозионного воздействия грунта для обеспечения надежности заземлителей и заземляющих проводников.
С учетом этого увеличены размеры элементов, например нормативный минимальный диаметр стержневых заземлителей из неоцинкованной стали увеличен с 6 до 10 мм.
Нормы постоянно совершенствуются, в них вносятся изменения и дополнения, которые публикуются в сборниках и новых изданиях нормативных документов.
Очень часто одно и то же заземляющее устройство является одновременно и рабочим, и защитным, а иногда и грозозащитным (молниезащитным). В близко расположенных установках напряжением до 1 кВ и выше используют общее заземляющее устройство, что снижает расходы на его монтаж. При этом за норму принимают наименьшее значение сопротивления растеканию тока из тех значений, которые нормированы для каждой из объединяемых электроустановок.
Совокупность заземлителя и заземляющих проводников представляет собой заземляющее устройство, через которое осуществляется заземление элементов и частей электроустановок.
При расчетах, проектировании и монтаже заземления используются специальные термины:
Заземлитель — металлический проводник или группа проводников (электродов), находящихся в соприкосновении с землей.
Заземляющие проводники — металлические проводники, соединяющие заземляемые части электрической установки с заземлителем.
Заземление какой-либо части установки — преднамеренное электрическое соединение ее с заземлителем.
Заземляющее устройство — совокупность заземлителя и заземляющих проводников.
Сопротивление заземляющего устройства — сумма сопротивлений заземлителя (относительно земли) и заземляющих проводников.
Сопротивление растеканию — сопротивление, которое оказывает заземлитель на участке растекания тока:
Rз = Uз /Iз,
где U3 — напряжение на заземлителе, В; Iз — ток, стекающий через заземлитель в землю, А.
Замыкание на землю — случайное электрическое соединение находящихся под напряжением частей электроустановки с частями, неизолированными от земли, или непосредственно с землей.
Замыкание на корпус — электрическое соединение отдельных частей машин, аппаратов, линий с заземленными конструктивными частями электроустановки.
Ток замыкания на землю — ток, проходящий через землю в месте замыкания.
Электроустановки с большими токами замыкания на землю — электроустановки напряжением выше 1000 В, в которых однофазный ток замыкания на землю составляет более 500 А.
Электроустановки с малыми токами замыкания на землю — электроустановки напряжением выше 1000 В, в которых однофазный ток замыкания на землю равен или менее 500 А.
Глухозаземленная нейтраль — нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (трансформаторы тока и др.).
Изолированная нейтраль — нейтраль, не присоединенная к заземляющему устройству или присоединенная через аппараты, компенсирующие емкостный ток в сети, трансформаторы напряжения и другие аппараты, имеющие большое сопротивление.
Нулевой рабочий проводник электроустановок до 1000 В — проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, глухозаземленной средней точкой источника постоянного тока.
Нулевой защитный проводник электроустановок до 1000 В — проводник, соединяющий зануляемые части с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока.
Рабочее заземление — присоединение к заземляющему устройству какой-либо точки электрической цепи, необходимое для обеспечения надлежащей работы установки в нормальных или аварийных условиях.
Основными элементами заземляющих устройств являются:
• естественные заземлители, т. е. находящиеся в земле или соприкасающиеся с землей сооружения, используемые для заземления;
• заземляющие проводники, соединяющие заземлители с заземляемым оборудованием;
• искусственные заземлители, т. е. такие, которые специально закладывают в землю для заземления.
К естественным заземлителям относятся металлические части (арматура) железобетонных конструкций (фундаментов опор линий электропередач и подстанций, фундаментов зданий), металлические подземные коммуникации (трубопроводы, броня и оболочки кабелей), наземные коммуникации (рельсовые пути) и др. Если естественные заземлители обеспечивают выполнение требований, предъявляемых к параметрам заземляющих устройств, то искусственные заземлители применяют, если необходимо уменьшить токи, протекающие по естественным заземлителям или стекающие с них в землю. Это значит, что в ряде случаев можно ограничиться использованием естественных заземлителей и отказаться от искусственных, что снижает затраты материалов и труда при монтаже и облегчает эксплуатацию заземляющих устройств.
Использование железобетонных фундаментов зданий в качестве заземлителей в настоящее время считается возможным лишь в грунтах влажностью не менее 3 % (из-за высокого электрического сопротивления бетона при меньшей влажности) и только при воздействии на фундаменты неагрессивных или слабоагрессивных грунтовых вод при отсутствии гидроизоляции или при защите поверхности фундаментов битумным (либо битумно-латексным) покрытием в соответствии с требованием СНиП П-28-73.
Нельзя использовать в заземляющих устройствах находящиеся в средне- или сильноагрессивных средах железобетонные конструкции (это может усилить коррозию конструкций), железобетонные конструкции (плиты, балки, фермы, колонны) с напрягаемой арматурой, а также металлические и железобетонные конструкции зданий, относимых к первой категории по молниезащите, для защиты этих зданий от прямых ударов молний.
С учетом приведенных ограничений использование конструкций зданий в качестве заземляющих устройств дало на ряде объектов возможность полностью отказаться от выполнения искусственных заземлителей в грунте, резко сократить протяженность заземляющих проводников внутри зданий и получить существенный экономический эффект.
Все элементы металлических и железобетонных конструкций (фундаментов, колонн, ферм, стропильных, подстропильных и подкрановых балок) в заземляющих устройствах соединяют так, чтобы имелась непрерывная электрическая цепь по металлу. В железобетонных колоннах, кроме того, предусматривают закладные детали на каждом этаже здания для подсоединения заземляемого электрического и технологического оборудования. Имеющиеся в зданиях сварные, а также болтовые или заклепочные соединения металлических колонн, ферм и балок достаточны для непрерывности электрической цепи. В местах, где отдельные элементы металлоконструкций не имеют таких соединений, предусматривают приварку гибких перемычек сечением не менее 100 мм2.
Сборные железобетонные фундаменты рекомендуется использовать в качестве заземлителей, если есть возможность соединения арматуры отдельных блоков между собой.
Вертикальную арматуру свай в свайных фундаментах соединяют с арматурой ростверка или фундаментных блоков электродуговой сваркой. Пространственные металлические каркасы колонн и стаканов фундаментов, а также арматурные сетки их подошв сваривают точечной сваркой на контактных машинах.
Закладные детали (изделия) рекомендованы в виде отрезков из угловой стали 63 ? 63 ? 5 длиной 60 мм, привариваемых к арматуре и выступающих на поверхность бетона; металлические перемычки — в виде стержней диаметром не менее 42 мм, привариваемых к закладным деталям.
Кроме описанных естественных заземлителей, ими могут служить и другие, например металлические трубопроводы для негорючих жидкостей, обсадные трубы артезианских колодцев. Во всех случаях применения естественных заземлителей протекающие при коротком замыкании токи не должны превышать допустимых для каждого элемента заземлителя в течение всей эксплуатации электроустановки.
Искусственным заземлителем чаще всего является металлическая конструкция, состоящая из одного или нескольких соединенных между собой металлических стержней, заложенные в грунт горизонтально или вертикально на определенную глубину. Горизонтальные заземлители прокладывают на глубине 0,5 м, на пахотной земле — не менее 1 м. Они рациональны в тех случаях, когда электропроводность верхнего слоя грунта обеспечивает нужную проводимость. Монтаж таких заземлителей механизирован и выполняется с минимальной затратой ручного труда, однако верхние слои почвы часто имеют большее электрическое сопротивление, чем глубинные. Кроме того, близко к поверхности земли растекание тока не идет равномерно во все стороны, как на глубине. Следовательно, сопротивление горизонтальных электродов обычно больше, чем сопротивление вертикальных электродов такой же массы. Поэтому наибольшее распространение в качестве заземлителей получили именно вертикальные заземлители. Заземляющие стержни, смонтированные в грунте, перемычки между ними и выводы от заземлителей на поверхность должны иметь следующие минимальные размеры:
• круглая сталь — диаметр не менее 10 мм;
• круглая оцинкованная сталь — диаметр не менее б мм;
• угловая сталь — толщина полки не менее 4 мм;
• общее сечение для заземлителей молниезащиты (грозозащиты) — не менее 160 мм2;
• полосовая сталь — толщина не менее 4 мм при сечении не ниже 48 мм2 (для магистралей заземления — не менее 100 мм2, для молниезащиты — не менее 160 мм2);
• отбракованные трубы — толщина стенки не менее 3,5 мм.
Минимальные размеры электродов применяются в
основном для временных электроустановок, где условия коррозии не имеют решающего значения. Для постоянных установок сечение заземлителей выбирают с запасом на коррозийное разрушение. По стойкости против коррозии предпочтительнее круглая сталь, так как разъедание электрода ржавчиной пропорционально площади поверхности электрода, соприкасающейся с грунтом, а площадь электрода круглого сечения из всех профилей наименьшая.
С целью обеспечения надежной работы заземлителя в течение 40–50 лет в благоприятных грунтовых условиях достаточно увеличения диаметра стержневого электрода против минимального всего на 2–3 мм, во влажных грунтах необходимо увеличение диаметра заземлителя вдвое.
От заземляемого элемента электроустановки, например от опоры воздушной линии (ВЛ) электропередачи, горизонтальные лучи прокладывают в двух противоположных направлениях или, если лучей не 2, а 3–4, разносят под углом в плане 120° или 90°. Это необходимо для эффективного использования закладываемого металла, так как рядом расположенные заземлители взаимно экранируются и их эффективность снижается во много раз. По этой же причине вертикальные заземлители нужно удалять друг от друга на возможно большее расстояние, равное хотя бы длине электрода. Например, если десять вертикальных электродов длиной по 5 м расположить в одну линию на расстоянии по 5 м друг от друга, то коэффициент их использования составит 0,47, а если те же электроды для экономии места расположить по замкнутому треугольнику или четырехугольнику, то коэффициент их использования будет еще ниже. То же относится и к применению наклонных электродов, которые разносят под равными углами аналогично горизонтальным и погружают в землю под углом около 45° для наилучшего использования.
Неравномерность распределения потенциалов на поверхности земли над заземлителем и вокруг него создает опасные напряжения шага и прикосновения. Для выравнивания потенциалов в таких случаях заземлитель можно выполнить в виде сетки из горизонтальных элементов, прокладываемых в земле вдоль и поперек территории электроустановки и соединяемых сваркой в местах пересечений. Размер ячейки такой сетки обычно составляет от 6 ? 6 до 10 ? 10 м.
Вокруг опоры ВЛ потенциалы можно выровнять заземлителем, выполненным в виде концентрических колец, заложенных в грунт и соединенных с опорой.
Снижает напряжения шага и прикосновения до допустимых значений на всей занимаемой им площади сетчатый заземлитель, однако за пределами сетки опасность может сохраняться. Поэтому в опасных местах, например на подходах к территории подстанций или вокруг фундаментов опор ВЛ, укладывают дополнительные заземлители на постепенно увеличивающейся глубине и соединяют их с основными заземлителями.
Отводимая под заземлитель площадь и расход металла могут быть снижены защитным изолирующим ограждением, сооружаемым вокруг заземлителя. Простейшее ограждение из диэлектрического материала препятствует растеканию тока по поверхности земли и снижает напряжение шага по сравнению с напряжением на заземлителе не менее чем в 100 раз и выравнивает потенциал за пределами заземлителя.
Вертикальная часть ограждения от уровня поверхности располагается на 0,4–0,6 м от глубины заложения верха заземлителя. Отбортовка ограждения выполняется под углом 90–95° к вертикали и имеет длину, составляющую (0,1–0,15)?S (S — площадь заземлителя). Для устройства ограждения может быть использован любой недорогой диэлектрический материал, обладающий достаточной механической прочностью и имеющий электрическую прочность не менее 1 МВ/м (изоляционные материалы на битумной основе, например бризол, выпускаемый из отходов производства и имеющий прочность не менее 20 МВ/м).
При стекании тока с заземлителя, например с заземляющей сетки, вокруг него формируется электрическое поле. На поверхности земли возникает электрический потенциал, и напряжение шага может достигать опасных значений непосредственно за пределами заземлителя, даже при применении известных способов выравнивания потенциалов. Поэтому геометрические параметры ограждения установлены в результате анализа электрического поля, формируемого заземлителем совместно с диэлектрическим выравнивающим ограждением, и отвечают требованиям безопасности. Устройство можно применять для заземлителей любой конструкции и при любых структурах грунта.
Часто заземлители из профильной стали не удовлетворяют требованиям, предъявляемым к заземляющим устройствам. Например, в засушливых местах трудно добиться стабильной проводимости таких заземлителей, в скальных грунтах их трудно монтировать, а в агрессивных грунтах трудно обеспечивать защиту от коррозии и долгий срок службы. Для таких ситуаций разработаны конструкции специальных заземлителей.

Схемы устройства защитного заземления (а) и защитного зануления (б).
Заземлить электроустановку можно, используя защитное зануление. Чем оно отличается от защитного заземления, видно по рисункам. Следут различать защитное заземление и защитное зануление. Как видно из рисунков, в обоих случаях потенциал на защитных проводах одинаковый. Но на левом рисунке проводник заземления проложен отдельно. Он соединяется с землей и с нулем за пределами внутренних электросетей. В этом случае 3-й защитный проводник называют «защитным заземлением». А в том случае, когда проводник нейтрали объединен с проводником «земли» (как на рисунке справа), 3-й защитный проводник называют «защитным занулением».

Схема подключения к электрической сети внутренней проводки с третьим защитным проводом.
Все российские наружние электросети имеют глухозаземленную нейтраль/ноль (это заземление обозначено тремя горизонтальными полосками внизу рисунка).
Таким образом, проводник нейтрали является одновременно и проводником заземления. Следовательно, проводник нейтрали может, а в некоторых случаях должен (например, в корпусах металлических вводных щитов) использоваться в обоих качествах — рабочем и защитном.
Поэтому совершенно законна и оговорена нормативами приведенная схема защитного зануления домашних электроустановок.
Правила устройства электроустановок (ПУЭ глава 1.7), регламентирующие устройство заземления и защитных мер электробезопасности, формулируют свои требования следующие образом:
? 1.7.82. Не допускается использовать в качестве нулевых защитных проводников нулевые рабочие проводники, идущие к переносным электроприемникам однофазного и постоянного тока. Для зануления таких электроприемников должен быть применен отдельный третий проводник, присоединяемый во втычном соединителе ответвительной коробки, в щите, щитке, сборке и т. п. к нулевому рабочему или нулевому защитному проводнику (см. также 6.1.20).
? 1.7.83. В цепи заземляющих и нулевых защитных проводников не должно быть разъединяющих приспособлений и предохранителей. В цепи нулевых рабочих проводников, если они одновременно служат для целей зануления, допускается применение выключателей, которые одновременно с отключением нулевых рабочих проводников отключают все провода, находящиеся под напряжением (см. также 1.7.84).
? 1.7.90. Соединения заземляющих и нулевых защитных проводников должны быть доступны для осмотра.
На первый взгляд, эти правила противоречат друг другу. С одной стороны: «Не допускается использовать в качестве нулевых защитных проводников нулевые рабочие проводники; идущие к переносным электроприемникам».
С другой стороны: «Для зануления таких электроприемников должен быть применен отдельный третий проводник, присоединяемый… в щите, щитке к нулевому рабочему… проводнику».
Как это: «не допускается использовать нулевые рабочие» и вместе с тем «присоединяемый к нулевому рабочему»?! И чтобы понять смыл этих требований, нужно знать, что с того момента, как нулевой проводник потянулся от нулевой шины распределительного щита по внутренней разводке, он является рабочим нулем, и уже на протяжении всей своей длины не может быть использован в качестве защитного по причине возможного переполюсования в розетках, ответвительных коробках и т. д. А другой специально проложенный нулевой проводник, протянутый от той же шины к корпусу прибора, может быть защитным нулем, который уже никто не переполюсует. Однако, прежде чем защитно зануляться по описанной схеме, полезно вызвать специалиста для проверки качества заземления нейтрали (кстати, по закону такие проверки должно производиться каждые полгода), и, если качество заземления вашей нейтрали окажется приемлемым, можно без особых опасений как минимум защитно занулиться отдельным проводником, подключенным на корпус или нейтральную шину щитка под отдельную клемму. В противном случае требуется устройство дополнительного заземления.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК