1.1.2. Спектр и цвет в воздухе и в воде

Белый лист бумаги, или любой другой белый предмет мы воспринимаем как результат отражения его поверхностью всех спектральных составляющих видимого света. Когда-то нас учили запомнить их последовательность в радуге как "каждый охотник желает знать, где сидят фазаны" (красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый). Эти цвета – основные, или спектральные. В учебниках живописи выделяют ещё и промежуточные цвета: малиновый, красно-оранжевый, жёлто-зелёный, голубовато-зелёный и др. Каждому промежуточному цвету тоже соответствует дополнительный цвет (сложение с которым не даёт окрашивания). У основных (спектральных) цветов парами дополнительных являются красный и зелёный, жёлтый и синий, оранжевый и голубой.

В таблице 1 представлен один из многих вариантов сопоставления длины волны с нашим ощущением и определением цвета. В таблицу добавлен столбец, содержащий названия дополнительных цветов. Любая пара основного и дополнительного цвета при смешении является бесцветной, и белый предмет, освещённый такой парой цветов, выглядит белым.

Дневной свет в результате смешения всех цветов с дополнительными бесцветен, а освещённый таким полихромным (многоцветным) светом белый предмет выглядит белым, поскольку отражает весь диапазон длин волн света. Если перед листом белой бумаги разложить освещающий свет с помощью призмы на спектральные составляющие (опыт Ньютона, школьный курс физики), экранировать одну из них и снова "сложить", мы увидим не белый, а окрашенный участок этого листа, освещённого "обеднённым" светом. Убирая синий, мы получим жёлтое окрашивание, убирая голубой – оранжевое, убирая красный, получим зелёное (рис. 1). Таким образом, изъятие из всего спектра всего одной спектральной составляющей приводит к его окрашиванию в дополнительный цвет. В данном случае все дополнительные цвета – парами, поэтому в сумме дают белый, а один из них – без пары, поэтому не "нейтрализуется" и окрашивает белый лист "в себя".

Чтобы получить один и тот же цвет, можно вычесть не только один дополнительный (см. выше), но и все цвета, кроме нужного. Например, экранируя жёлтый, мы получаем синее окрашивание, и точно такой же результат получается при экранировании всех цветов, кроме синего (рис. 2). Отличие в том, что в первом случае объект освещён спектрально богатым полихромным светом (только лишь без жёлтого), а во втором – бедным монохромным (только синим), поэтому при одинаковом тоне (цвете) в первом случае цветовое пятно гораздо ярче, чем во втором. Это важно для понимания цвета приманки в воде: полихромный свет гораздо ярче монохромного света одного с ним цвета.

Тот же принцип лежит в основе окрашивания белого предмета, который, попав в воду, в зависимости от глубины погружения, выглядит по-разному, окрашиваясь в цвета, дополнительные тем, которые на данной глубине не пропустила вода. В первую очередь, вследствие потери красного и фиолетового (как при экранировании красного и фиолетового), отражённый белой поверхностью свет приобретает жёлто-зелёное окрашивание. А на большой глубине, где кроме голубого никакие цвета не представлены (как при экранировании всех, кроме голубого), белый предмет выглядит голубым.

Это связано с изменением спектрального состава света вследствие избирательного ослабления водой его крайних диапазонов (рис. 3, по Рогов А.А, 1964). Ослабление (аттенуация) складывается из процессов поглощения (наиболее интенсивного для красного и инфракрасного диапазонов спектра света) и рассеивания (наиболее выраженного для фиолетового и ультрафиолетового). В результате чистая вода, например, горных озёр, заполненных талой водой ледников, в глубине и выглядит голубой, и освещает находящиеся в её толще предметы голубым светом.

1.1.3. Краска и цвет

Краски, которыми красят приманки, поглощают определённые участки спектра, а то, что отражается, мы и воспринимаем как тот или иной цвет. Нужно помнить, что чистых красок не бывает и в большинстве своём они отражают свет в довольно широком диапазоне (рис. 4), что по эффекту близко к экранированию одной спектральной составляющей и пропусканию остальных. Мало того, один и тот же цвет мы можем получить как с помощью одной краски, так и с помощью смешивания разных красок. Теоретически, продолжая "замешивать" краски, мы можем добиться поглощения практически всех спектральных составляющих и "на выходе" получить отражение, равное нулю. Это и будет чёрный цвет. На практике, в силу "несовершенства" красок, чёрный не получается, поэтому используются чёрные пигменты, например, сажа, которая поглощает практически весь световой поток. Поскольку чёрному пигменту всё равно, что поглощать, ничего не отражая, чёрная приманка остаётся чёрной и в воде.

Данный текст является ознакомительным фрагментом.