Оборудование и материалы
Оборудование и материалы
Газовая сварка и резка металлов осуществляются с помощью различных газов, их смесей, паров бензина и керосина.
1. Кислород при обычных температуре и давлении – это прозрачный газ, имеющий следующие физические характеристики:
– без вкуса, запаха, цвета;
– масса 1 м3 при 20 °C и атмосферном давлении составляет 1,33 кг;
– при нормальном давлении горит при температуре 182,9 °C.
Химическая активность кислорода очень высока: он взаимодействует со всеми химическими элементами, за исключением инертных газов, причем эти реакции относятся к экзотермическим.
Для сварки и резки применяют технический кислород, который в зависимости от содержания чистого кислорода (остальное приходится на азот и аргон) различается по сортам:
– I сорт – содержание чистого кислорода составляет 99,7 %;
– II сорт – не менее 99,5 %;
– III сорт – 99,2 %.
Чистота кислорода – это очень важный показатель, особенно для резки металлов. При его повышении улучшается качество обработки металла и снижается расход самого газа.
Кислород требует осторожного обращения, поскольку при контакте с органическими веществами (маслами, угольной пылью и пр.) он склонен к самовоспламенению и взрыву в результате их быстрого окисления. Кроме того, он может взаимодействовать с горючими газами и парами, что тоже может закончиться взрывом.
2. Ацетилен (C2H2) относится к горючим газам и чаще всего используется при газовой сварке. При горении в кислороде его температура повышается до 3050–3150 °C. Физические характеристики ацетилена:
– бесцветный газ с резким запахом;
– легче воздуха (масса 1 м3 -1,09 кг);
– сжижается при температуре -82 °C;
– переходит в твердое состояние при температуре -85 °C;
– взрывоопасен (температура самовоспламенения – 240–630 °C; при повышении давления она может быть и ниже, если, например, при давлении 0,3 МПа температура воспламенения составляет 530 °C, то при давлении 2,2 МПа – 350 °C), особенно в смеси с кислородом или воздухом.
Технический ацетилен производят двумя способами – из карбида кальция либо из природного газа, нефти или угля. Причем второй вариант обходится гораздо дешевле (примерно на 30–40 %).
3. Пропан-бутановая смесь, или технический пропан (бесцветный газ, с резким неприятным запахом, несколько тяжелее воздуха), количество бутана в котором составляет 5-30 %. Эту смесь получают в процессе газодобычи или переработки нефти. Температура, которую дает пропан-бутановая смесь, составляет 2400 °C, поэтому ее применяют при сварке стали толщиной не более 3 мм (в этом отношении она не уступает по результативности ацетилену), в противном случае металл не удается прогреть до такой степени, чтобы получить прочное соединение. Но низкотемпературное пламя применяют при резке, правке и очистке металла. Для сварочных работ пропан-бутановая смесь доставляется в баллонах в жидком состоянии. В верхней части емкости он самопроизвольно меняет свое агрегатное состояние на газообразное.
4. Природный газ, 77–98 % которого составляет метан (газ без цвета и запаха), остальное количество приходится на бутан, пропилен, пропан и др. Так как температура метан-кислородной смеси составляет 2100–2200 °C, сфера ее применения достаточно узкая.
5. Водород (H2) – самый легкий газ, горючий, не имеет ни цвета, ни запаха. В смеси с кислородом становится взрывоопасным, поэтому его применение при сварочных работах требует строжайшего соблюдения техники безопасности.
Кроме перечисленных веществ, в сварке находят применение и другие горючие газы, например коксовый газ, городской газ, нефтяной газ, пары бензина и керосина.
Для осуществления газовой сварки необходимо специальное оборудование.
1. Ацетиленовый генератор, предназначенный для получения ацетилена в процессе взаимодействия карбида кальция с водой. Согласно ГОСТу 5190-78 такие устройства различаются по следующим параметрам:
– давление получаемого газа (генераторы низкого и среднего давления – до 0,02 МПа и 0,02-0,15 МПа соответственно);
– способ установки (стационарные и передвижные);
– производительность (стационарные – 5, 10, 20, 40, 80, 160, 320 или 640 м3/ч, а передвижные – 1,25 и 3 м3/ч). Чаще всего используют генераторы производительностью 1,25 м3/ч;
– характер взаимодействия карбида с водой. Различаются генератора типов КК («карбид в воду»), ВК («вода на карбид»), К (контактный), ВВ («вытеснение воды»), ВК + ВВ (комбинированный).
Независимо от системы функционирования все генераторы состоят из газообразователя, газосборника, предохранительного затвора и автомата для регулировки вырабатываемого ацетилена. В качестве примера можно привести ацетиленовый генератор ГВР-1,25 М, конструкция которого представлена на рис. 87.
Рис. 87. Устройство ГВР-1,25 М: а – общий вид; б – устройство в разрезе: 1 – контрольный кран; 2 – газовое пространство; 3 – воронка; 4 – горловина; 5 – предохранительный клапан; 6 – бачок; 7 – трубка; 8 – корпус; 9 – мембранный регулятор; 10 – маховичок; 11 – контрольный кран; 12 – реторта; 13 – загрузочная корзина; 14 – траверсы; 15 – винт; 16 – крышка; 17 – обратный клапан; 18 – предохранительный затвор; 19 – предохранительная мембрана; 20 – манометр
Технические характеристики передвижных ацетиленовых генераторов наиболее распространенных марок представлены в табл. 37. Таблица 37. ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ НЕКОТОРЫХ ПЕРЕДВИЖНЫХ АЦЕТИЛЕНОВЫХ ГЕНЕРАТОРОВ ПРОИЗВОДИТЕЛЬНОСТЬЮ
2. Предохранительные затворы, устанавливаемые на ацетиленовые генераторы для предупреждения обратного удара, возникающего при попадании в трубопроводы и шланги, через которые поступают горючие газы, взрывной волны и пламени. Если это происходит с высокой скоростью, то удар может дойти до генератора и вызвать его взрыв.
Предохранительные затворы бывают сухими и жидкостными (обычно водяными) (рис. 88). Последние распространены в большей степени.
Рис. 88. Предохранительные затворы: а – жидкостного типа ЗСГ-1,25-4: 1 – корпус; 2 – колпачок обратного клапана; 3 – гуммированный клапан; 4 – корпус обратного клапана; 5 – сетка; 6 – пробка для слива воды из обратного клапана; 7 – ниппель для ввода ацетилена в затвор; 8 – пробка; 9 – контрольная пробка; 10 – пламяпреградитель; 11 – штуцер; 12 – накидная гайка; 13 – ниппель; б – сухого типа ЗСН-1,25: 1 – корпус; 2 – мембрана; 3 – крышка; 4 – отсечный сферический клапан; 5 – стакан; 6 – уплотнитель; 7 – обратный клапан
Для генераторов низкого давления предназначены затворы открытого типа, для генераторов среднего давления – закрытого типа. Принцип действия такого устройства заключается в том, что взрывная волна и пламя, не доходя до потока горючего газа, либо стравливаются в атмосферу, либо гасятся внутри затвора.
3. Баллоны для сжатых газов. Принципиальное отличие баллонов для ацетилена от баллонов для других горючих газов состоит в том, что этот газ содержится в ацетилен-ацетоновом растворе, поглощенном специальной пористой массой (активированным углем марки БАУ-А (ГОСТ 6217-74)), которой и заполнен весь баллон. Это позволяет безопасно хранить, транспортировать и использовать ацетилен. Сейчас все чаще применяют литую пористую массу на основе силикатов.
Вентиль для баллона под ацетилен сделан из стали и выдерживает давление 25 кгс/см2. Маховик у него отсутствует (с ним нельзя было бы надеть присоединительный хомут с натяжным винтом). Для открывания и закрывания вентиля используется специальный ключ, надевающийся на шпиндель. На седле в корпусе вентиля имеется эбонитовый уплотнитель, который открывает и блокирует выход ацетилена.
Баллоны для ацетилена бывают разного объема, но, как правило, используют баллоны емкостью 40 л (5,5 м3 ацетилена, с пористой массой – 7 м3).
Баллон для пропан-бутановой смеси сваривается из листовой стали толщиной 3 мм и имеет один продольный и два кольцевых шва. Сверху приварена горловина, внизу – башмак, обеспечивающий устойчивость. Баллон заполняется смесью примерно на 85 %.
Вентиль для пропанового баллона изготовлен из стали и, в отличие от других конструкций, имеет запорное устройство в виде мембраны, выполненной из пружинной стали. Если стоит неметаллический уплотнитель, то вся шпиндельная система вентиля уплотняется ниппелем.
Кислородный баллон – это цилиндр с выпуклым днищем и сферической горловиной, в которой имеется сквозное отверстие с конической резьбой, куда вкручивается запорный вентиль. Производятся баллоны малой (до 12 л) и средней (12–40 л) вместимости с условным давлением 200 кгс/м2.
Корпус кислородного вентиля сделан из латуни. Его герметичность обеспечивают сальник и прокладка (сейчас чаще всего используют капроновую).
Основные характеристики баллонов для горючих и сжатых газов представлены в табл. 38.
Таблица 38. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ БАЛЛОНОВ ПОД ГОРЮЧИЕ И СЖАТЫЕ ГАЗЫ
4. Редуктор. Это прибор, функции которого заключаются в понижении давления газа из баллона (газопровода) до рабочего и поддержании его на таком уровне. Редукторы бывают одно– и двухкамерными. В последних давление понижается сначала до промежуточного значения (с 15 до 4 МПа), потом до рабочего – 0,3–1,5 МПа. Двухкамерные редукторы имеют более сложную конструкцию, стоят дороже, но способны поддерживать давление практически на постоянном уровне.
В настоящее время производят семнадцать типов редукторов. Обозначение марок редукторов включает в себя:
– буквы: Б (баллонный), С (сетевой), Р (рамповый), А (ацетилен), В (водород), К (кислород), М (метан), П (пропан), О (одна ступень с пружинным заданием), Д (две ступени с пружинным заданием), З (одна ступень с пневматическим задатчиком);
– цифры, по которым судят о максимальной пропускной способности редуктора.
Параметры некоторых наиболее часто применяемых редукторов приведены в табл. 39.
Таблица 39. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НЕКОТОРЫХ
Корпус редуктора имеет такой же цвет, что и баллоны, т. е. для кислорода – голубой, для ацетилена – белый, для пропана – красный.
5. Сварочная горелка с комплектом сменных наконечников, которые по ГОСТу 1077-79 классифицируются:
1) по роду используемого газа или жидкости:
– для ацетилена;
– для газов-заменителей;
– для водорода;
– для горючих жидкостей;
2) по назначению:
– универсальные (для сварки, резки и пр.);
– специализированные;
3) по способу подачи газа и кислорода в смеситель:Данный текст является ознакомительным фрагментом.